
Notation. F, circulation; 8, polar angle of the cylindrical coordinate system; r 
velocity potential of the main flow; r velocity potential; K, curvature of the surface; 
r = i + $(z, t), equation of the surface of the capillary jet; T, surface tension; ~, 
wave number; ec, growth factor; Q, surface charge; 6c, initial amplitude of sinusoidal per- 
turbation of the surface of the capillary jet; ~0, wave number bounding the region of wave- 
number instability; ~, curvature of the initial sawtooth perturbation; N, number of harmonics; 
td, time of decay; t,, time during which the surface charge changes abruptly; a, radius of 
jet; ql, surface charge per unit length of the jet at the given moment of time; n, external 
normal to the surface of the jet; ~m, wave number corresponding to the maximum value of ~c" 
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EFFECT OF FRICTION ON LOW FREQUENCY SOUND PROPAGATION 

IN A GAS-LIQUID FOAM 

I. I. Gol'dfarb and I. R. Shreiber UDC 532.539+534.19+541.182.45 

A model is proposed for propagation of low frequency acoustic disturbances in 
a gas-liquid foam with consideration of friction on interphase boundaries 
during liquid motion in a system of interconnected microcapillaries. A Burgers 
equation with quasilinear convolution-type term is obtained. Structure and 
dynamics of linear signals are studied over the range of applicability of the 
model. 

The spectrum of technological processes which employ foams and foamlike structures 
has expanded precipitously and currently encompasses a most varied range of applications 
[i]. To support production techniques involving foams both in cases where foam formation 
must be intensified, and in situations where foam disrupts the normal course of a process, 
a precise realtime knowledge of foam parameters is required. Since one method of solving 
such problems involves acoustical diagnostics, the problem of determining sound propagation 
characteristics in foam arises. 
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Assuming that the process 
by: 

The present study will analyze hydrodynamic effects which affect the evolution of an 
acoustical disturbance in foam. 

Such an unusual state as foam develops in a two-phase medium due to the presence in 
the liquid of surface active materials (SAM), which lead to a reduction in the surface ten- 
sion coefficient [i]. Due to their clearly expressed dipole structure SAM molecules concen- 
trate on the interphase boundary, arranging themselves so that the hydrophobic end of the 
molecule is turned toward the gas, while the hydrophilic end is submerged in the liquid. 

This then creates a dual effect - on the one hand the SAM molecules form the inner 
shell of the gas bubble, while on the other, they hinder free liquid motion on the film 
[2]. 

In foams with a small moisture content ~ (~< 0.05) the overwhelming portion of the 
liquid (depending on ~, up to 95%) is concentrated in unique formations called Plateau- 
Gibbs channels. These are formed at the joint between three films separating gas bubbles 
and recall in form a right cylinder having a Plateau triangle as its generatrix (a figure 
bounded by three pairs of tangent spheres of identical radius). Following a polyhedral 
model for the foam, we assume that the gas bubbles have the form of dodecahedra, while liquid 
content in the films and liquid displacement from channels into films and back can be ne- 
glected [i]. 

Considering the above, the process of propagation of an acoustical disturbance in foam 
can be represented in the following manner: Upon application of a pressure perturbation 
the gas bubbles change in size, which produces motion of the liquid contained in the foam. 
The liquid flow through a system of chaotically oriented capillaries (Plateau-Gibbs channels) 
is one of the hydrodynamic effects controlling evolution of the acoustical signal. The 
character of this flow will introduce certain unique features into the propagation of small 
amplitude oscillations. 

In formulating the problem we will make a number of physical assumptions. We assume 
that the scale of the disturbances to be considered is such that it permits use of the linear 
acoustics approximation. We will limit our examination to only those foam motions for which 
the foam structure is not destroyed. We neglect the effects of gravity and assume the liquid 
to be weightless. 

The foam density pf can be written in the form: 

Using the definition ~ (~= VI/(V I + V2) ) and elementary relationships of the homogeneous 
model of [3] we can obtain an expression for the change in moisture content A% considering 
the liquid volume V I and the gas volume V 2 to be independent variables. It should be recalled 
that the independence of V l implies that the problem is nonconservative. Physically, this 
means that liquid may enter the control volume under consideration as well as leave it. 
For the present problem we will limit ourselves to the conservative problem, i.e., assume 
that AVe-----0. 

is adiabatic, the change in bubble volume for A~ is given 

~P~o" 
It should be noted here that assumption of an adiabatic process is not required in 

principle. The problem of heat exchange between the gas in the bubble and the liquid in 
the Plateau-Gibbs channels is of undoubted scientific interest, and was considered in [4] 
using a cell scheme. However the goal of the present study is to investigate the effect 
of friction on liquid motion in the foam during sound propagation, so that the question 
of the character of interphase heat exchange will be reduced to choice of a value for the 
polytrophy index, which is arbitrary for the effects to be analyzed. 

By variation of Eq. (i) with substitution of Eq. (2) for A% with consideration that 
the gas state within the bubble is determined by a Mendeleew-Clapeyron equation, we obtain 
the equation of state of the foam in the linear approximation 

(z) 
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AP~ . 1 1 1 ?P20 2 7RT20 
Ap = ' + �9 ( 3 )  

As in a continuous medium, the pressure Pf within the foam is a function of the gas 
pressure in the bubbles P2, the pressure in the liquid channel PI, and the moisture content 
~.~ It was shown in [5] that for continuity of the medium and regularity of the functions 
used over the characteristic dimensions of the problem, the macroscopic parameters obtained 
by averaging over gas volumes and over surfaces within the phases coincide with each other. 
One consequence of this theorem is the fact that the volume and surface concentrations coin- 
cide at each point of the continuum at which the conditions of the theorem are satisfied. 
Consequently, for the pressure within the foam Pf one can use an expression similar to the 
one for density: 

Ps = Plq ) ~- P~ (1 -- ~). (4) 

In writing the equation of motion for the foam it is necessary to consider the fact 
that the foam has an anomolously high viscosity [I], therefore the corresponding equation 
must include the frictional stress on the boundary. 

Assuming that the foam volume under study is located within a cylindrical vessel of 
radius Rf, we can write the corresponding relationship in the form 

Ow 1 OP t o~ t 

" Ot -~ pj Ox pIR; "r ( 5 )  

where ~f is a coefficient defined by the form of the vessel section (in the case of a cylinder 

~f = 2 ) .  

The friction term in Eq. (5) ~f depends significantly on the velocity profile in the 
foam flow. Because of inertia profile establishment requires a definite time, the ratio 
of which to the characteristic signal time determines the form of the function ~f. In other 
words, the form of ~f depends on how deep the viscous sublayer grows as compared to Rf. The 
thickness of the viscous sublayer 6f is determined [6] by the signal carrier frequency 

and the kinematic viscosity of the foam ~f:6f -- V~f7~. Assuming for numerical estimates 
that vf ~ i0~ I [i], Rf = 0.i m, we find that at v > vf* = 2vf/Rf 2 = 2'i0 -a sec -l the viscous 
sublayer comprises a small fraction of the vessel radius Rf, i.e., for foam motion in the 
vessel under consideration a disturbance with frequency ~ > mf* is a high frequency one. In 
this case the expression for ~f can be obtained by reduction of the integral relationship and 
written in the form [6]: 

"~I ---- 9j _~ OT ] / ' t  --- I:" ( 6 )  

Having written the continuity equation for the foam as a homogeneous medium in the 
usual form [6] 

Op t q 0(pfw) = 0  
Ot Ox (7) 

and performing elementary substitutions and linearization, we eliminate the foam velocity 
w, and Eqs. (5)-(7) can be reduced to the following form: 

02PY __ 02PY at V ~ I  i 02p] d~ ( 8 )  
ax~ at 2 R~ - ~  &2 t]/TL-?--~" 

E q u a t i o n  ( 8 )  i s  an  e q u a t i o n  o f  m o t i o n  w h i c h  c o n s i d e r s  f r i c t i o n  on t h e  b o u n d a r y  o f  foam 
c o n t a c t  w i t h  t h e  v e s s e l .  I t  c o n t a i n s  t h e  t r a n s v e r s e  d i m e n s i o n  o f  t h e  v e s s e l  and  can  be  
used for processing of concrete experimental results, obtained, for example, with "shock 
tube" type devices [3]. 

One of the fundamental questions of foam acoustics is the relationship between the 
gas pressure in the bubbles P2 and the liquid pressure in the channels PI. It would be 
incorrect to use the Rayleigh equation in standard form [3, 5], since it is valid for an 
isolated bubble in an infinite liquid volume, while the bubbles are densely packed in the 
foam. Introduction of a correction for bubble interaction [5] is also not justifiable, 
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since such corrections function at volume gas contents not exceeding 0.15-0.20, while in 
a foam this quantity lies in the range 0.95-1. A correct determination of the relation- 
ship between P2 and PI requires consideration of the basic mechanisms because of which 
the difference P2 - Pl is nonzero surface tension, liquid motion, the combined mass effect, 
and the viscous deformed boundary. We will consider these in somewhat more detail while 
keeping in mind the quasi-ordered structure of the foam. 

It follows from Plateau's experimental data [i] and general physical considerations 
[7] that at each corner of the dodecahedron there are four Plateau-Gibbs channels of which 
three are edges of the given polyhedron, while the fourth is oriented normally, if that 
term can be applied to a dodecahedron, to the surface of the foam cell structure under con- 
sideration. With change in the mean dimension of the foam cell (for concreteness, with 
reduction in external pressure) the liquid as it were flows into this "foreign" channel 
from the center of the fixed gas bubble, while its "native" channels with the liquid they 
contain play the role of combined mass for this cell. Consequently, the dynamics of liquid 
displacement in the "foreign" channel are practically determined by the dependence of bubble 
radius on time rb(t) and the degree of freedom of liquid motion in the foam. The mathematical 
equivalent of the latter concept is the hydroconductivity Kf - a function of the physical 
parameters of the foam: the dispersion r b and the moisture content ~ [8]. 

Commencing from the above, for the liquid phase of the system we write equations of 
the following form: O 

- -  ( r=~u)  = O, 
Or 

Ou 1 OP~ u 

at - Pl Or wiT- Kf ( 9 )  

Here the momentum transport equation is taken in the Brinkman form - a unique superposition 
of the Darcy and Navier-Stokes equations [9]. The term linear in the liquid velocity u 
corresponding to dissipation due to penetration of liquid into the "foreign" channel, imposes 
limitations on the range of applicability of the set of Eqs. (9). 

This is because friction linear in velocity indicates the presence in the channel of 
a Poiseuille flow regime. This in turn implies that the viscous sublayer in the Plateau- 
Gibbs channel grows in size and occupies the entire channel volume, i.e., the sublayer thick- 
ness 61 is larger than the characteristic channel transverse dimension, which we may denote 

by r 

Thus, the notation of Eq. (9) implies quasisteady liquid flow in the channel, which 
limits the upper frequency of model applicabiiily: 

/ 2% 2Vl 
S 

The e q u a t i o n s  o f  s y s t e m  (9)  mus t  be  i n t e g r a t e d  o v e r  r f rom r b t o  r b + b0,  w i t h  b 0 d e t e r -  
mined  f rom t h e  c o n d i t i o n  o f  s m a l l n e s s  o f  ~(~  ~ 3 b 0 / r b ) .  On t h e  b u b b l e  s u r f a c e  b o u n d a r y  c o n -  
d i t i o n s  o f  t h e  n o r m a l  fo rm mus t  be  s a t i s f i e d  [3 ,  5, 6 ] :  

u = }b, P1 = P~ 2a 4 ~ 1 ~  (~1 = ply1). (10)  
rb 

I n  w r i t i n g  Eq. (10)  we h a v e  n e g l e c t e d  t h e  d i f f e r e n c e  in  c a p i l l a r y  p r e s s u r e  d e t e r m i n e d  

by t h e  b u b b l e  p r e s s u r e  ( 2 o / r b )  and t h e  l a t e r a l  s u r f a c e  o f  t h e  P l a t e a u - G i b b s  c h a n n e l  (o/(al~/-S), 
a1-2  = ~ /2  - C r y )  [ 1 ] .  A f t e r  i n t e g r a t i o n  o f  Eq. (9 )  w i t h  c o n d i t i o n s  (10)  we o b t a i n  t h e  e q u a -  
t i o n :  

[ 
] rb 2~ P~ -- P- (11) 

which is an analog of the Rayleigh equation for a foam within the framework of the proposed 
model. 

To determine the relationship between Ar b and &P2 we make use of the previously intro- 
duced assumption of adiabatic change in bubble volume, used in deriving Eq. (2). In this 
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case Arb/r b = -AP2/(37P20 ). Substituting this expression in Eq. (ii) we obtain the relation- 
ship between PI and P2 in the form 

(12) 

Turning to deviations from the steady state values, we have the following expression: 

rg~ P2 ~lrb [ 4 - } - ~ ]  ~ - l - 2 a  AP2AP~_Ap~. (13) 
--Pl  ~ 37p2 ~ rb r~- 37P2 ~ 

Expressing bP 1 from Eq. (13) in terms of AP2, P2, P2 and s u b s t i t u t i n g  the  express ions  
obta ined in Eq. (4) ,  we f ind  the  form of the  dependence of change in foam pressure  hPf on 
dev ia t i on  of the  p ressure  in the  gas and i t s  two f i r s t  d e r i v a t i v e s .  In t roduc ing  the  func- 
t i on  APf = APf(AP2, P2, P2) thus obtained bpf into the left side of the equation of motion 
Eq. (8), and the fraction AP2/c42 from the equation of state of the foam Eq. (3) on the 
right side, we obtain a quasilinear wave equation in the form 

P~t--c~P2x~{l-- 2~ 1-+-3~(I--~)}__.  ~, ~'~ i O~P~ d, 
rb 37P2o R~ _= O~ ~ ]/t--~ 

uT~o 
Equation (14) contains solutions corresponding to waves propagating in both directions. 

After "changing" the derivative, i.e., using the approximation 8/8t = -c~(8/Sx), the equa- 
tion can be reduced to a form corresponding to wave displacement in one direction (to the 
form of the Burgers-Corteweg--de Brise equations). However, to obtain and study the dis- 
persion relationship it is desirable to maintain the form of Eq. (14). 

The dispersion relationship corresponding to wave equation (14) can be written in the 
form 

= t + - 
rb 3YP~o 

(15) 

I I/ - '  1 + 0  �9 
37P2orb Ky / 9---7~0 ! o 

Analysis of dispersion relationship (15) can be commenced reasonably by defining the 
basic characteristics of the model which are determined by the foam parameters chosen. We 
will consider a foam with moisture content ~ = 0.01, and dispersion (cell size) r b = i0 -a m. 
In this case the characteristic cross section of a Plateau-Gibbs channel proves to be 
S = 10 -8 m2~ which gives an upper limit for model applicability of m1* = 102 sec-1. Assum- 
ing that the characteristic dimension of the vessel holding the foam comprises Rf = 0.1 m, 
we obtain for the quantity mf* the numerical value i0 -a sec -I We will study Eq. (15) with 
consideration of these estimates. 

We begin by analyzing the effect of surface tension, which leads to an insignificant 
reduction in phase velocity. The scale of this reduction can easily be estimated by con- 
sidering that the presence of SAM reduces the surface tension coefficient to a value of 
o = 0.032 N/m [i]. In this case the ratio of the capillary pressure 2o/r b to atmospheric 
(assuming normal conditions) does not exceed i0 -a 

It is obvious that such a contribution to dispersion may be neglected. An estimate 
of the action of the combined mass effect can also be easily done. The small content of 
liquid in the foam leads to a decrease in combined mass per single gas bubble, as compared 
to the analogous situation with close to unity moisture content [3, 5]. 

From this follows, in particular, the appearance in the first term on the left side 
of Eq. (ii) of the factor b 0 in place of the r b of the usual Rayleigh equation [3, 5], and 
further, the shift in the resonant bubble frequency to the right on the frequency scale. 
Since we are operating in the low frequency range, and the range of applicability of the 
model relative to the effect of this mechanism will be determined by the expression pl~rb2~2/ 
(9~P20) , which at ~ = 102 sec -I (the upper frequency limit) and the foam parameters chosen 
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will equal approximately 10 -I~ Naturally, such a contribution may be neglected completely. 

The contribution to sound propagation in the foam of the viscous boundary can be exam- 
ined by considering liquid motion in the Plateau-Gibbs channels. It is appropriate to note 
here that there is at present no unified opinion regarding the function Kf( ~; rb). This 
is related to the experimental difficulty of observing liquid motion in the foam. This 
is true because even in a foam with structure very close to polyhedral ('~ < 0.01), applica- 
tion of a pressure disturbance leads to liquid flow over the films forming the polyhedron 
faces, while it is impossible to experimentally determine the fraction of liquid which flows 
in that manner (as contrasted to that which flows through channels). We will choose the 
function Kf in the Koseni-Karman form [5] with the numerical coefficient presented in [8]. 
This choice was based on the fact that the expression for the permittivity coefficient ob- 
tained upon transition from Brinkman equation (9) to the Darcy equation then describes the 
results of experiments performed by Kann [8] in porous media at the heat-mass transport 
laboratory of the Northern Exploitation Problems Institute, Siberian Branch, Academy of 
Sciences of the USSR. 

With the notation used herein the function Kf( ~; r b) appears as: 

Ks (qo; rb) = 3,48. lO-ar~ q~a. (16)  

Substituting Eq. (16) in the third term of the denominator of Eq. (15), we find the 
ratio I:i0 ~ for comparison of the viscous boundary mechanism and liquid motion through chan- 
nels. It is obvious that to the accuracy used herein the action of viscous boundary effects 
may be neglected. 

Analysis of the effect of friction on the surface of the vessel containing the foam 
reduces to consideration of the function f(~), more precisely, the radical contained therein. 
Assuming a cylindrical vessel af = 2 the intensity of the friction is determined by a radical 

of the form Jmf*/~. Near the left edge of the range of model applicability the value of 
the radical is close to unity, but with motion upward in frequency it decreases to the order 
of 10 -2 

It is understandable that the contribution of such a quantity cannot be neglected and 
we must retain the function f(m) without changes. 

Thus, analytical study of dispersion equation (15) shows that of all the physical mech- 
anisms analyzed the dominant ones are effects related to friction on the gas-liquid and 
foam-solid boundaries. With consideration of this fact Eq. (15) can be written in the 
simpler form 

k z= ~z ~l~z ]-I 
c-i- [ [ i - 3 e 0K---Lj ' (17) 

while Eq. (14) reduces to a classical wave equation of the form utt - c42Uxx = 0 with dis- 
sipative right side in the form of the third derivative (Burgers term) and quasilinear term 
in the form of a Duhamel integral [3]: 

Pzt t -  c~P~xx ~-C~ q~Z~l P2xx~-{- ~ v|/~ ~ OzP~ dx 
V = 3 O. (18 ) 

By "transforming" the derivative Eq. (18) can be reduced to a linear Burgers equation 
with quasilinear right side in the form of the convolution 

3?P2o/Q R~ n - ~  0"~ ] / - t - -  x" 

We will consider the dispersion relationship (17) assuming smallness of the imaginary 
term in square brackets and the radical in the function f(~). In this case Eq. (17) can 
be expanded in a small parameter and we obtain an approxiamtion of Eq. (15) in the form 

k2 ~2 [ / 1 = - c 2  1 +(1-}-  i) V co~ -}- ico ; % - -  lO'44yP~~ (19)  
co % 103~1 

193 



cp 
~p 4 3~ 

100 2 100 

80 I ~0 7 

60 S 60 
L , I I i 

, i , , , , , , , ,, // 10 -2 700 70Z ~) 
2 6 78 11+ 18 03/03; 7 

Fig. 1 Fig. 2 

Fig. 1. Phase v e l o c i t y  d i spe r s ion  near l e f thand  boundary of 
frequency range, r b = i0 -a m: I) 9= 0.02; 2) 0.01; 3) 1/150; 
4) 0.005. Cp, m/sec. 

Fig. 2. Function CD(m) calculated with Eq. (19) for foam with 
parameters: r b = ID -a m: i) ~ = 0.02; 2) 0.01; 3) 1/150; 4) 
0.005. 

The value of ~0 for the problem parameters chosen comprises 10 4 sec -I Elementary 
analysis of Eq. (19) shows that the dispersion of the phase velocity falls radically with 
frequency and is caused by friction on the foam-solid phase boundary, with the function 
Cp(m) being representable in the form: 

(0 __ C& 
cp(r -- Re[k(r 1 -[- r r (20) 

(0 

Figure 1 shows graphs of the functio n Cp(m) near the lefthand boundary of the frequency 

range (frequency ~f*). With increase in frequency the effect of the radical ~ decreases 
and in the limit ~ + w1* the value of Cp(m) tends to the quantity c4, which defines the 
propagation rate of disturbances in the gas-liquid medium [3], since friction on the inter- 
phase surface dies but contributes to phase velocity dispersion in accordance with Eq. (20). 
The curves of c~(m) shown in Fig. 2, calculated with Eq. (19) for the various physical param- 
eters characterlzing the foam, indicate that near the right side of the range of applicabil- 
ity the propagation rate for small amplitude oscillations in the foam is defined with good 
accuracy by the quantity c4. 

The attenuation decrement of an acoustical signal, defined by the imaginary part of 
the wave vector Im[k(~)], is composed of two parts, caused by friction during motion of 
the foam as a whole in the vessel, and friction during liquid flow in the system of Plateau- 
Gibbs channels. Expanding Eq. (19) in a small parameter, we obtain the attenuation decre- 
ment in the form of the sum of two terms 

Imik(~)] = ]--- + . (21) 
2c~ % 

The contribution from motion of the foam as a whole is proportional to the root of 
the frequency and is a slow frequency of m. But the effect of liquid motion through chan- 
nels is described by a quadratic function of frequency. 

Consequently, there exists a critical frequency m,, at which the dominant mechanism 
of sound wave energy dissipation changes. The value is easily determined: ~, = (mf*/~02) I/a 
It can easily be seen that in the interval ~f* < m < m, attenuation is determined mainly by 
the effective foam viscosity vf and the vessel radius Rf, while in the range m, < m < m1* 
the attenuation decrement is proportional to the liquid viscosity Dz and inversely propor- 
tional to the moisture content ~ and the initial gas pressure in the bubbles P20. Figure 3 
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Fig. 3. Attenuation decrement produced by: i) foam friction 
on vessel wall; 2) friction on interphase boundary. 

Fig. 4. Total attenuation decrement calculated from disper- 
sion equation (17): i) r b = 10 -3 m, �9 = 0.02; 2) r b = 10 -3m, 

= 0.005. 

shows curves of each of the two terms of Eq. (21) in logarithmic scale and notes the point 
of their intersection (m...). Numerical calculation of m, for the foam parameters used yields 
a value of the order of 5-i0 z sec -I, i.e., over the greater part of the interval on the 
frequency scale over which the proposed model is valid, the dominant dissipation mechanism 
is friction on the vessel wall. On the other hand, the effect of liquid friction dominates 
over a narrower, but practically more interesting range. 

Analysis of the imaginary component of the wave vector k(m) would be incomplete if 
we did not consider one unique feature of Eq. (21): within the framework of the proposed 
model dissipation does not depend on the dispersion of the foam, i.e., the gas bubble radius 
r b does not appear in the final expression. This is explained by the form chosen for the 
function Kf(~; rb), which has the physical meaning of hydroconductivity [8]. The dependence 
of the decrement on foam structural parameters reduces to that on the moisture content ~, 
contained in the denominator of the term corresponding to the effect of liquid microflows. 
However, it should be noted that this dependence is quite strong. This is demonstrated 
by Fig. 4, which shows attenuation decrements calculated for the complete Eq. (17). What 
is at first a slight difference between the curves becomes weighty when we note that the 
figure is drawn in logarithmic scale. The difference in the attenuation coefficients in 
the range mf < ~ < ~, is explained by the factor c4, the effect of this cofactor being es- 
pecially clear in Eq. (21). In the interval m, < ~ < ~z* the dependence of the decrement 
on ~ is determined by the combined contribution of the velocity c~ which depends on the 
average moisture content, and the factor ~ itself. 

Thus the dominant influence on propagation of low frequency sound in a gas-liquid foam 
is produced by mechanisms related to friction on the foam-solid boundary and on interphase 
boundaries. 

Notation. ~ , foam moisture content; p, density, kg/m3; V, volume, m3; P, pressure, 
Pa; y, adiabatic index of gas; co, "frozen" speed of sound in two-phase mixture, m/sec; 
c3, speed of sound in gas, m/sec; D2, molecular weight of gas, kg/mol; Rf, vessel radius, m; 
T, frictional stress, Pa; v, kinematic viscosity, m2/sec; ~, frequency, sec-Z; w, foam 
velocity, m/sec; u, liquid velocity~ m/sec; r, radius, m; S, Plateau-Gibbs channel section, 
m2; o, surface tension coefficient, N/m; k, wave vector, m-Z; x, coordinate, m; t, time, 
sec. Subscripts: i, liquid; 2, gas; f, foam as a whole; b, individual bubble. A dot above 
a variable denotes differentiation with respect to time. 
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WAVE FLOW OF VISCOELASTIC SUSPENSIONS IN TUBES 

K. V. Mukuk, V. G. Gasenko, and Z. Sh. Khudaibergenova UDC 532.135:622.323 

The wave propagation of viscoelastic suspensions in tubes is theoretically 
investigated, taking account of the deformation of the tube walls and the dis- 
persity of the medium within the framework of the rheological model of a vis- 
coelastic liquid with internal oscillators. A wave equation is obtained, and 
its limiting cases are analyzed. The dispersional relation is investigated 
with characteristic values of the rheological parameters of the medium. A 
numerical experiment is undertaken to investigate the influence of the the- 
ology of the medium on the structure and dynamics of wave perturbation of 
velocity perturbations. 

Introduction. The increased production of anomalous petroleum has prompted the active 
investigation of rheophysical problems of oil and gas production [i]. The high content 
of paraffin, naphthene, and aromatic hydrocarbons in the petroleum extracted and transported, 
which are present in the form of solid-phase disperse particles at the certain temperatures, 
means that the solid-hydrocarbon content may reach 18-20%. This leads to various anomalies 
in the rheodynamic properties of petroleum and hydrodynamic peculiarities in pipeline trans- 
port [2-3]. In particular, nonsteady wave conditions of flow appear in pipeline startup, 
with variation in pumping-station operating conditions, in emergency situations, etc. Exper- 
imental investigation of shock-wave propagation in paraffin petroleum and modeling of such 
media [4] shows the presence of new, previously undescribed features in the propagation 
of waves in petroleum. It is found that increase in solid-particle concentration leads to 
significant distortion of the structure and dynamics of shock-wave propagation. The distor- 
tion is such that it cannot be described within the framework of existing models of visco- 
elastic liquids [5]. In connection with this, there is a need to investigate the influence 
of rheological properties of suspensions on wave processes on the basis of fundamentally 
new models. The possibility of using the model of viscoelasticity with internal oscillators 
is considered below [6]. 

Since anomalous petroleum has viscoelastic properties [3], it is fairly difficult to 
determine the parameters of interphase interaction of such materials with disperse solid 
particles and hence to describe the media within the framework of a multispeed continuum. 
At the same time, taking into account that the densities of the liquid and solid phases 
are similar, and the particle dimensions are many times less than the distances between 
them, the tube diameters, and the given wavelengths, it is expedient to model the medium 
as quasi-homogeneous, neglecting the dynamic and inertial effects in the relative motion 
of the components. However, in this case, the medium is assumed to be continuous, and the 
presence of solid particles is only indirectly taken into account: by the change in rheologi- 
cal constants as a function of the concentration. This assumption of continuity of the 
medium eliminates the possibility of taking direct account of the influence of the particle 
dynamics onthe wave propagation at a wavelength much greater than the particle size. 

The problem of taking account of the dynamics of solid particles in a viscoelastic 
medium is analogous to that which arises in considering problems of nonlinear seismics [6]. 
On the basis of the analysis of experimental data on wave propagation in quartz and of various 
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